
Problem A

– Beehives –
Bees are one of the most industrious insects. Since they collect nectar

and pollen from flowers, they have to rely on the trees in the forest. For
simplicity they numbered the n trees from 0 to n − 1. Instead of roaming
around all over the forest, they use a particular list of paths. A path is based
on two trees, and they can move either way i.e. from one tree to another in
straight line. They don’t use paths that are not in their list.

As technology has been improved a lot, they also changed their working
strategy. Instead of hovering over all the trees in the forest, they are targeting
particular trees, mainly trees with lots of flowers. So, they planned that they
will build some new hives in some targeted trees. After that they will only
collect their foods from these trees. They will also remove some paths from
their list so that they don’t have to go to a tree with no hive in it.

Now, they want to build the hives such that if one of the paths in their
new list go down (some birds or animals disturbs them in that path) it’s still
possible to go from any hive to another using the existing paths.

They don’t want to choose less than two trees and as hive-building re-
quires a lot of work, they need to keep the number of hives as low as possible.
Now you are given the trees with the paths they use, your task is to propose
a new bee hive colony for them.

INPUT
Input starts with an integer T (T ≤ 50), denoting the number of test

cases.

Each case starts with a blank line. Next line contains two integers n
(2 ≤ n ≤ 500) and m (0 ≤ m ≤ 20000), where n denotes the number of
trees and m denotes the number of paths. Each of the next m lines contains
two integers u v (0 ≤ u, v < n, u 6= v) meaning that there is a path between
tree u and v. Assume that there can be at most one path between tree u to
v, and needless to say that a path will not be given more than once in the
input.

OUTPUT
For each case, print the case number and the number of beehives in the

proposed colony or ‘impossible’ if its impossible to find such a colony.

NOTE
Dataset is huge. Use faster I/O methods.

1

Problem A

INPUT EXAMPLE

3

3 3
0 1
1 2
2 0

2 1
0 1

5 6
0 1
1 2
1 3
2 3
0 4
3 4

OUTPUT EXAMPLE

Case 1: 3
Case 2: impossible
Case 3: 3

2

Problem B

– Bits Equalizer –
You are given two non-empty strings S and T of equal lengths. S contains

the characters ‘0’, ‘1’ and ‘?’, whereas T contains ‘0’ and ‘1’ only. Your task
is to convert S into T in minimum number of moves. In each move, you can

1. change a ‘0’ in S to ‘1’

2. change a ‘?’ in S to ‘0’ or ‘1’

3. swap any two characters in S

As an example, suppose S = “01??00” and T = “001010”. We can trans-
form S into T in 3 moves:

• Initially S = “01??00”

• Move 1 – change S[2] to ‘1’. S becomes “011?00”

• Move 2 – change S[3] to ‘0’. S becomes “011000”

• Move 3 – swap S[1] with S[4]. S becomes “001010”

• S is now equal to T

INPUT
The first line of input is an integer C (C ≤ 200) that indicates the number

of test cases. Each case consists of two lines. The first line is the string S
consisting of ‘0’, ‘1’ and ‘?’. The second line is the string T consisting of ‘0’
and ‘1’. The lengths of the strings won’t be larger than 100.

OUTPUT
For each case, output the case number first followed by the minimum

number of moves required to convert S into T . If the transition is impossible,
output −1 instead.

INPUT EXAMPLE

3
01??00
001010
01
10
110001
000000

OUTPUT EXAMPLE

Case 1: 3
Case 2: 1
Case 3: -1

1

Problem C

– LCM Pair Sum –
One of your friends desperately needs your help. He is working with a

secret agency and doing some encoding stuffs. As the mission is confidential
he does not tell you much about that, he just want you to help him with a
special property of a number. This property can be expressed as a function
f(n) for a positive integer n. It is defined as:

f(n) =
∑

1≤p≤q≤n

lcm(p,q)=n

(p+ q)

In other words, he needs the sum of all possible pairs whose least common
multiple is n. (The least common multiple (LCM) of two numbers p and q
is the lowest positive integer which can be perfectly divided by both p and
q). For example, there are 5 different pairs having their LCM equal to 6
as (1, 6), (2, 6), (2, 3), (3, 6), (6, 6). So f(6) is calculated as f(6) =
(1 + 6) + (2 + 6) + (2 + 3) + (3 + 6) + (6 + 6) = 7 + 8 + 5 + 9 + 12 = 41.

Your friend knows you are good at solving this kind of problems, so he
asked you to lend a hand. He also does not want to disturb you much, so to
assist you he has factorized the number. He thinks it may help you.

INPUT
The first line of input will contain the number of test cases T (T ≤ 500).

After that there will be T test cases. Each of the test cases will start with
a positive number C (C ≤ 15) denoting the number of prime factors of n.
Then there will be C lines each containing two numbers Pi and ai denoting
the prime factor and its power (Pi is a prime between 2 and 1000) and
(1 ≤ ai ≤ 50). All the primes for an input case will be distinct.

OUTPUT
For each of the test cases produce one line of output denoting the case

number and f(n) modulo 1000000007. See the output for sample input for
exact formatting.

INPUT EXAMPLE

3
2
2 1
3 1
2
2 2
3 1
1
5 1

OUTPUT EXAMPLE

Case 1: 41
Case 2: 117
Case 3: 16

1

Problem D

– RNA Secondary Structure –
RNA, which stands for Ribonucleic Acid, is one of the major macro-

molecules that are essential for all known forms of life. It is made up of a
long chain of components called nucleotides. Each component is made up of
one of 4 bases and are represented using A, C, G or U. The primary structure
of RNA is a sequence of these characters. The secondary structure of RNA
refers to the base pairing interactions between different components. More
specifically, base A can pair up with base U and base C can pair up with
base G. The stability of the RNA secondary structure depends on the total
number of base pairs that can be formed. The final structure is the one that
contains the maximum number of base pairs.

Let’s represent the primary structure as a string consisting of characters
from the set (ACGU). The rules of secondary structure formation are as
follows:

1. Any base A can form a pair with any base U

2. Any base C can form a pair with any base G

3. Each base can be part of at most one pair.

4. Let’s assume w < x, y < z and w < y. If base at index w forms a
pair with base at index x and base at index y forms a pair with base
at index z, then one of the following two conditions must be true:

y > x
z < x

5. There can be at most K pairs between C and G.

You will be given the primary structure of the RNA of a certain species
and your job is to figure out the total number of base pairings in the final
secondary structure based on the constraints mentioned above.

You will be given the primary structure in a compressed format that
uses Run-length encoding. In this type of data compression, consecutive
characters having the same value is replaced with a single character followed
by its frequency. For example, “AAAACCGAAUUG” will be represented
using “A4C2G1A2U2G1”. That means the primary structure will be given
in the format < c1f1c2f2c3f3 . . . cnfn >, where ci is from the set (ACGU)
and fi is a positive integer.

The species that we are dealing with have the following properties:

1. f1 + f2 + f3 + ...fn ≤ 10050

2. f1 ≤ 5000

1

Problem D

3. fn ≤ 5000

4. f2 + f3 + f4 + . . .+ fn− 1 ≤ 50

INPUT
The first line of input is an integer T (T ≤ 200) that indicates the

number of test cases. Each case contains two lines. The first line is the
primary structure given in run-length encoded format. The second line gives
you the value of K (0 ≤ K ≤ 20), that gives an upper limit on the number
of C −G base pairs that can be in the final secondary structure.

OUTPUT
For each case, output the case number followed by the maximum number

of base pairs that can be formed. Look at the samples for exact format.

INPUT EXAMPLE

3
A3C1G1C1U4A2U1
1
A3C1G1C1U4A2U1
0
A100U200
2

OUTPUT EXAMPLE

Case 1: 6
Case 2: 5
Case 3: 100

ILLUSTRATION
One possible final secondary structure for case 1 is depicted below that

shows the 6 base pairings.

2

Problem E

� Old School Days �
I don't know how you feel about your school time, but I become maudlin

when I remember those days. One of our teachers told us at the �nal year
that among all the educational institutions in life one misses his/her school
days the most. And yes, I miss those days a lot.

Let me tell you that we had a grid board in our school and it was not
as banal as it looks in the picture. The board was colorful and we also had
di�erent color chalks to use on it. Can you imagine how exciting it was for
me when I �rst saw this board? In class break we used to draw on this board
and play di�erent games, few of them I can recall.

One of them was like this� �rstly two players will mark some grid points.
Then they will toss deciding who plays �rst. At each turn a player marks
four points as A, B, C and D. Then join (A,B), (B,C), (C,D) and (D,A)
to form a quadrilateral. Twice of the area of that quadrilateral is added to
his score and the turn changes. (In case, if you are wondering why twice� it
is just to ensure that the score is always integer) A player can not draw a
quadrilateral if it was drawn before. However, you can use previously used
points. For example, suppose there are 5 points on the grid, P , Q, R, S
and T . First player can choose, (A,B,C,D) = (P,Q,R, S), but then the
second player can not choose (A,B,C,D) = (R,S, P,Q) because both of
them depicts the same quadrilateral. If both of the players play optimally
to maximize their own score I wonder what could be the sum of their scores.

So your task is to construe this game. You are given co-ordinates of N
distinct points, if two players play the above mentioned game optimally then
what is the sum of their scores?

INPUT

First line of the input data contains a positive integer T denoting the
number of test cases (T <= 50).

1

Problem E

For each case, �rst line contains a positive integer N (N <= 700). Hence
follows N co-ordinates of the points (x, y). In case you don't know, I should
say - I am not from your time, I was brought here by a few scientists from
future. And in my time we use huge boards so the absolute value of the
co-ordinates can be as large as 106. Just to ensure that no one can draw a
degenerate quadrilateral, no three points will be collinear.

OUTPUT

For each test case output the case number followed by sum of the scores.
Since this score can be huge just print the answer mod 1000003.

INPUT EXAMPLE

2

4

2 0

0 2

-2 0

0 -2

5

2 0

0 2

-2 0

0 -2

2 2

OUTPUT EXAMPLE

Case 1: 16

Case 2: 72

2

Problem F

� Sentry Robots �

We need to guard a set of points of interest

using sentry robots that can not move or turn.

We can position a sentry at any position facing

either north, south, east or west. Once a sentry

is settled, it guards the points of interest that

are infront of it. If two or more points are in

the same row or column a single robot can guard

them all. Unfortunately, there are also some obstacles that the robot cannot

see through.

From a set of points of interest and obstacles lying on a grid, calculate

the minimum number of robots needed to guard all the points. In order to

guard a point of interest, a robot must be facing the direction of this point

and must not be any obstacles in between.

Given the following grid, where # represents an obstacle and * a point

of interest, the minimum number of robots needed is 2 (a possible position

and orientation is shown using arrows for each robot). Note that this is not

the actual input or output, just a �gure.

Grid Solution

.

. * # * . . . * # * . .

. . # # . . .

. * # * . . . ^ # ^ . .

For the following grid we need 4 robots because of the obstacles.

Grid Solution

. * * . . . � * . .

. * # * . . ^ # ^ .

. # * . . . # _ . .

. . * * . .

INPUT

The �rst line of the input has an integer C representing the number of

test cases that follow. Before each test case there is an empty line.

For each case, the �rst line has 2 integers, Y and X, representing the

height and width of the grid. The next line has an integer that indicates the

number of points of interest P . The following P lines will have the positions

py and px of the points of interest, one point per line. The next line has

an integer that indicates the number of obstacles W . The following W lines

will have the positions wy and wx of an obstacle, one per line.

1

Problem F

OUTPUT

For each test case print the minimum number of robots needed to guard

all the points of interest, one per line.

CONSTRAINTS

1 ≤ C ≤ 50
1 ≤ Y,X ≤ 100
0 ≤ P ≤ Y ×X
0 ≤ W ≤ Y ×X
0 ≤ P +W ≤ Y ×X
1 ≤ px,wx ≤ X
1 ≤ py, wy ≤ Y

INPUT EXAMPLE

2

4 6

4

2 2

2 4

4 2

4 4

3

2 3

3 3

4 3

4 5

6

1 2

1 3

2 4

2 2

3 3

4 3

2

2 3

3 2

OUTPUT EXAMPLE

2

4

2

Problem G

� How do spiders walk on water? �

Some types of spiders are able to walk on wa-

ter. But spiders can have problems when walking

near a waterfall.

Water in ponds or calm parts of rivers are

suitable for spiders walking on water. When spi-

ders realize water moves they jump in the oppo-

site direction. However, the danger for spiders

resides in the increasing speed of water as they

move away from the area of calm waters. A spi-

der is powerful enough to walk against the cur-

rent if the water speeds is less than or equal to

its jumping power P .
Waterfalls do a sharp increase in water speed, hence, whenever water

just before the edge of a waterfall moves slower than the jumping power of a

spider, the spider can't detect the waterfall and may fall, because he thinks

that can easily return to the zone of calm waters. If a spider is walking in

a zone where the speed of water is higher than its jumping power, then the

spider will fall.

Usually, the speed of water as it approaches to waterfalls doesn't follow

any pattern, but we have discovered that in some cases the water speed at

distance m from calm waters depends linearly on the speed at m − 1 and

m − 2. In such cases, we have measured the speed of the water at the �rst

few meters, so the water speed at each point m up to the waterfall can be

calculated.

We want to know the minimum distance to the waterfall that the spider

can go and safely return.

INPUT

The input consists of several cases, one per line. Each case is de�ned by

several integer numbers: D, P , S0, S1, S2, ...

D is the distance in meters from calm waters to the waterfall (2 < D ≤
10000). P is the jumping power of the spider (1 < P ≤ 1000). Remaining

numbers in the line represent the speed of water as it approaches to the

waterfall. S0 is the speed water moves in the area of calm waters, S1 is

the speed at a distance of one meter from the area of calm waters, S2 is

the speed at a distance of two meters from the area of calm waters, and so

on. Depending on the case this sequence can be longer, maximum is D + 1
values. When the sequence of water speeds doesn't follow a known pattern

D + 1 values will be provided, otherwise a minimum of four numbers. All

the sequences are nondecreasing sequences.

1

Problem G

OUTPUT

The output will be an integer in a di�erent line for each case indicating

the minimum distance to the waterfall that the spider can be on water. If

the jumping power of the spider is greater than the water speed just before

the waterfall then the output must be: The spider may fall!, because the

spider cannot detect the waterfall. If the jumping power of the spider is

lower than the water speed at any area of the pond or river the output must

be: The spider is going to fall!.

INPUT EXAMPLE

3 3 0 1 1 1

10 2 0 1 1 2

10 3 0 1 1 2

10 4 0 1 1 2

10 5 0 1 1 2

10 6 0 1 1 2

10 7 0 1 1 2

10 8 0 1 1 2

10 9 0 1 1 2

10 3 1 1 2 2 2 3 3 3 3 4 4

10 5 1 1 2 2 2 3 3 3 3 4 4

10 5 6 6 6 6 8 8 8 11 30 41 42

10 2 0 1 1 1 1 1 1 1 1 1 1

50 200 0 3 6 15 36

OUTPUT EXAMPLE

The spider may fall!

7

6

6

5

5

5

4

4

2

The spider may fall!

The spider is going to fall!

The spider may fall!

45

2

Problem H

� Shares �

You are a successful business man who uses to invest some money in the shares market. As a successful
man you manage a network of well prepared spies assistants that can assure you the values of the shares
for the next day. Each day you have a capital that you can spend in the market according to your
assistants suggestions. In addition, you can only buy packs of shares from several salesmen.

Your goal is to select which packs should be bought in order to maximize the pro�ts without exceeding
the amount of capital you have.

INPUT

The �rst line contains the maximum capital C that you can invest (0 < C ≤ 230). The next line has
two integers, the number of total shares N (0 < N ≤ 500) and the number of packs P (0 < P ≤ 50000).
Each one of the following N lines describe the N shares. Each line contains two integers ai and ti
representing the current price and the expected price for the next day of the ith share (1 ≤ i ≤ N),
respectively. Finally, the following P lines contain the information of the packs, one per line. For each
line, the �rst integer R represents the number of di�erent shares that contains this pack. Then for each
share type you have two integers sj and qj (1 ≤ j ≤ R), where sj is the id of the jth share and qj is the
quantity of the jth share in this pack.

OUTPUT

An integer that indicates the maximum expected pro�t for the next day.

INPUT EXAMPLE

500

4 6

10 15

8 6

20 15

12 12

3 1 6 2 7 3 8

3 3 8 1 10 2 4

3 4 10 2 5 1 10

2 1 4 2 4

1 3 2

2 4 3 2 1

OUTPUT EXAMPLE

52

1

Problem H

INPUT EXAMPLE

200000000

5 30

2800 3500

1400 4800

2900 2800

500 3800

3300 4700

2 2 13 4 15

4 4 1 1 22 3 17 5 22

1 3 2

1 3 6

4 1 11 2 5 3 7 5 15

1 5 1

4 2 26 1 21 3 8 5 26

2 3 5 2 26

4 2 30 4 12 3 7 5 14

3 3 8 2 20 5 3

1 5 30

2 1 29 3 3

5 3 3 1 20 5 26 4 9 2 25

3 1 2 2 16 3 5

2 5 5 4 26

5 2 18 5 10 4 18 1 12 3 30

3 2 5 3 27 5 4

4 3 2 4 8 1 20 2 6

3 2 14 1 1 4 22

5 2 23 3 26 1 27 5 3 4 6

1 2 16

4 1 13 4 10 2 23 5 2

1 1 14

1 2 20

1 3 14

2 3 21 1 22

1 2 27

3 5 24 1 26 3 13

5 4 15 3 3 2 21 1 5 5 16

4 2 22 5 1 4 10 1 30

OUTPUT EXAMPLE

2168800

2

Problem I

– The Moon of Valencia –
It is well known that the Moon of Valencia is magical. Everyone talks about a mystery that

happens at night. People remember what time they entered the first bar, what time arrived to
the hotel and how happy they arrived, but nobody remembers the bars and pubs they visited.

The Valencia hotels have hired you for developing an application that helps customers to
remember. The application will inform customers with one of all the possible sequences of bars
and pubs. Customers have to provide the following information: departure time and place,
arrival time and place, and degree of satisfaction on arrival.

The application uses a map with the location of each bar or pub. Each bar or pub produces
a different degree of satisfaction when visited. But people gets angry when walks from one
place to another, that’s the reason why walking between different places reduces the degree of
satisfaction. The reduction considered depends on the amount of minutes people needs to get
one place from another one. If the amount of minutes is not an integer the remaining seconds
should be considered a portion of a minute, i.e., 30 seconds imply 0.5 minutes. People walk at
a speed of 4 km/h, can stay in a bar or pub the time they like, but for getting the satisfaction
must remain at least 15 minutes. People can decide not to visit a bar or pub, i.e., they can use
a path from the origin to the target and to enter in a subset of all the bars or pubs reachable
with the path. Entering to the departure place is optional, like entering others places. The goal
grade of satisfaction is computed up to the door of the target place, without entering it. So the
grade of satisfaction of the target place (bar, pub or hotel) should not be computed.

INPUT
Input consists of several test cases. Each case begins with the map description, which is

followed by the list of arrivals your application have to check. The description of a map begins
with the word MAP in capital letters followed by two integer numbers, P and M , where P is
the number of places and M is the number of paths connecting two places. (1 ≤ P ≤ 64).
Places and paths are described one per line. Each place is described with two coordinates (real
numbers represent kilometers), its grade of satisfaction (a real number), the ID and the name.
The paths connecting two places are identified by the their identifiers. Each pair of places can
only be connected by one path.

Figure 1 shows the map corresponding to the first map in the example input case. It is
guaranteed that no crossing paths exist.

The list of arrivals to be processed begins after a line with the word ARRIVALS in uppercase.
Each arrival is described in a single line, including departure time, departure place, arrival time,
arrival place and the grade of satisfaction on arrival, a real number.

OUTPUT
The output for each case must begin with the word MAP in capital letters followed by a

number indicating the number of test case. The first test case is MAP 1, second is MAP 2, and
so on. For each arrival proposed in the input it must appear a line in the output specifying
a valid path found or the string Impossible! indicating that it is not possible to find a path
from origin to target with the required grade of satisfaction. A path found will be valid if the
absolute difference between the required grade of satisfaction and the obtained one is less than
0.1, and contains no loops, i.e. a place can’t appear in the path found more than once.

1

Problem I

UPV
0,0

B01
0,1

SPV
5,5

B02
1.1,1

B03
0.6,1.7

B16
0.6,2.5

B11
1.5,1.5

B04
1.3,2

B05
1.5,2.5

B06
2.5,2

B10
2.5,3.5

B14
1.3,3.6

B17
3.5,2.5

B07
4,3.5

B13
4.5,2.5

B08
1.1,4

B09
1.2,4.5

B15
1.5,4

B12
3,4.5

Figure 1: Representation of the first map in the input example.

2

Problem I
Each path found must begin with the string PATH FOUND: in capital letters, followed by the

obtained grade of satisfaction with three decimal digits and then the sequence of places from
origin up to target. The ID of the unvisited places must appear preceded by the ! sign. Notice
as the ID of the target place never is preceded by this sign.

Hint: set up your solution for running as fast as possible by using this example, it should be
enough for all test cases.

INPUT EXAMPLE
MAP 19 40

0 0 0 UPV Universitat Politecnica de Valencia
5 5 0 SPV Contest hotel
0 1 35 B01 The Object
1.1 1 42 B02 Opera
0.6 1.7 33 B03 New York
1.3 2 55 B04 Blue Note
1.5 2.5 23 B05 The Popes
2.5 2 13 B06 Petrol
4 3.5 12 B07 King of Kings
1.1 4 14 B08 O Salati
1.2 4.5 13 B09 The Snails
2.5 3.5 34 B10 The Earth
1.5 1.5 55 B11 Cafe Coffee
3 4.5 31 B12 Vermouth house
4.5 2.5 45 B13 Jamon Session
1.3 3.6 24 B14 Let’s go to eat
1.5 4 34 B15 I’m hungry
0.6 2.5 53 B16 The Gecko
3.5 2.5 43 B17 The Black Sheep

UPV B01
B01 B02
B01 B03
B01 B16
B02 B03
B02 B11
B16 B08
B16 B14
B16 B03
B03 B04
B03 B11
B04 B11
B04 B16
B04 B05
B05 B14
B08 B09
B08 B15
B08 B14
B11 B06
B14 B15
B05 B06
B05 B16
B05 B10
B15 B09
B15 B10
B09 B12
B06 B10
B06 B17
B10 B07
B10 B17
B10 B12
B10 B14
B12 B15
B12 B07
B12 SPV
B17 B07
B17 B13
B07 B13
B07 SPV

3

Problem I
B13 SPV
ARRIVALS
23:00 UPV 03:00 SPV 9.0
23:00 UPV 03:00 SPV 8.0
23:00 UPV 03:00 SPV 7.0
23:00 UPV 03:00 SPV 6.0
23:00 UPV 03:00 SPV 5.0
23:00 UPV 03:00 SPV 4.0
23:00 UPV 03:00 SPV 3.0
23:00 UPV 03:00 SPV 2.0
23:00 UPV 03:00 SPV 1.0
23:00 UPV 03:00 SPV 0.0
23:00 UPV 03:00 SPV -1.0
23:00 UPV 03:00 SPV -2.0
23:00 UPV 03:00 SPV -30.0
23:00 UPV 03:00 SPV -40.0
23:00 B05 03:00 B10 40.0
23:00 B05 03:00 B10 30.0
23:00 B05 03:00 B10 20.0
23:00 B05 03:00 B10 10.0
23:00 B05 03:00 B10 0.0
23:00 B05 03:00 B10 -10.0
23:00 B05 03:00 B10 -20.0
23:00 B05 03:00 B10 -30.0
23:00 B05 03:00 B10 -40.0
MAP 2 1
0 0 0 UPV Universitat Politecnica de Valencia

10 10 0 SPV Hotel Silken Puerta de Valencia
UPV SPV
ARRIVALS
23:00 UPV 1:00 SPV 9.0
23:00 UPV 1:00 SPV 8.0

OUTPUT EXAMPLE

MAP 1
PATH FOUND: 9.002 UPV B01 B16 B04 !B11 B06 !B17 !B13 SPV
PATH FOUND: 7.929 UPV B01 B16 B14 B08 B09 !B12 SPV
PATH FOUND: 6.973 UPV B01 B16 B04 !B11 B06 !B10 !B07 SPV
PATH FOUND: 6.028 UPV B01 B16 B05 B10 !B17 !B07 SPV
PATH FOUND: 4.995 UPV B01 B16 B04 !B05 !B14 !B15 !B10 B07 SPV
PATH FOUND: 4.078 UPV B01 B16 B08 !B15 B12 B07 SPV
PATH FOUND: 3.028 UPV B01 B16 B05 !B10 B12 !B07 SPV
PATH FOUND: 1.929 UPV B01 B16 B14 !B15 B08 B09 !B12 SPV
PATH FOUND: 0.912 UPV B01 B16 B03 !B04 !B05 !B06 B17 !B13 !B07 SPV
PATH FOUND: 0.028 UPV B01 B16 B05 !B10 B17 !B13 !B07 SPV
PATH FOUND: -0.986 UPV B01 B16 B08 !B09 !B15 B12 SPV
PATH FOUND: -1.973 UPV B01 B16 B03 !B04 !B05 B10 !B17 !B07 SPV
PATH FOUND: -29.953 UPV B01 B03 !B16 B05 !B10 !B14 B15 !B12 SPV
PATH FOUND: -39.913 UPV B01 B03 !B16 B08 !B09 !B15 B12 !B07 SPV
PATH FOUND: 40.069 B05 B16 B14 !B08 B09 !B15 B10
PATH FOUND: 30.012 B05 B16 B08 !B15 B10
PATH FOUND: 19.979 !B05 B04 !B03 B02 !B01 B16 !B08 !B09 !B15 B10
PATH FOUND: 10.004 B05 B14 B08 !B15 !B09 B12 B10
PATH FOUND: 0.004 !B05 B14 B08 !B15 B09 B12 B10
PATH FOUND: -9.966 B05 !B14 !B15 B12 B10
PATH FOUND: -20.012 B05 !B06 !B17 B07 B12 B15 !B14 B10
PATH FOUND: -30.012 !B05 B06 !B17 B07 B12 B15 !B14 B10
PATH FOUND: -40.018 !B05 !B04 !B16 B14 !B15 B10
MAP 2
Impossible!
Impossible!

4

Problem J

� Countdown �

The �Countdown� TV show has a part that consists of
obtaining a number by combining six di�erent num-
bers using the basic mathematical operations: addi-
tion, subtraction, product and division. The basic
rules for the game are:

• The contestant selects six of twenty-four shu�ed tiles. The tiles are arranged into two
groups: four "large numbers" (25, 50, 75 and 100) and the remainder "small numbers",
which comprise two each of the numbers 1 to 10. Hence the tiles have the values {1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100}.

• The contestant chooses how many large numbers are in the selection; anywhere from none.

• The contestants then have thirty seconds to get a number as close to the target as possible
by combining the six selected numbers using addition, subtraction, multiplication and
division.

• Not all numbers need to be used.

• A number can be used as many times as it appears.

• Fractions are not allowed, only positive integers may be used at any stage of the calculation.

Example:

• Contestant requests two large numbers and four small numbers.

• Selection is: 75 50 2 3 8 7

• Randomly generated target is: 812

• Contestant declares result: 813

• Contestant gives details: 75 + 50 = 125; 125 - 8 = 117; 117 × 7 = 819; 3 × 2 = 6; 819 -
6 = 813

• Expert notes: 50 + 8 = 58; 7 × 2 = 14; 14 × 58 = 812

Your task is to write a program that calculates the best sequence of operations that lead to
the target number T . If there is no way to get T , give the closest solution.

INPUT

The input consists of several cases, one per line. The �rst line indicates the number of cases C
to process (1 ≤ C ≤ 50). Each of the following C lines contains six natural numbers from the
set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100} and another natural number T (1 ≤ T ≤ 999)
that indicates the target.

OUTPUT

The output for each case will be a set of lines with the following format:

• First line: Target: number T
• n lines: sequence of operations, the format is operand2 operator operand2 = result
• Last line: Best approx: number obtained
• Blank line

1

Problem J

See example for a better understanding. If there is more than one best approximation, all
of them will be considered valid. The sequence of operations should be valid, you should never
use a value before you obtain it. It is OK to print more operations than needed as long as they
are valid. Note that all the numbers and operators must be separated by at least one space.

INPUT EXAMPLE

3

1 75 100 5 3 25 25

100 100 100 100 100 75 345

1 3 1 10 100 75 345

OUTPUT EXAMPLE

Target: 25

Best approx: 25

Target: 345

100 + 100 = 200

75 + 100 = 175

200 * 175 = 35000

35000 - 100 = 34900

34900 / 100 = 349

Best approx: 349

Target: 345

100 - 10 = 90

3 * 90 = 270

270 + 75 = 345

Best approx: 345

2

